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Creeping flow around a deforming sphere 

By S. P. LINT AND A. K. GAUTESEN 
Clarkson College of Technology, Potsdam, New York 

(Received 1 June 1971 and in revised form 25 May 1972) 

The flow of an incompressible viscous fluid past a deforming sphere is studied for 
small values of the Reynolds number. The deformation is assumed to be radial 
but is otherwise quite general. The case of S = O(l) ,  where 8 is the Strouhal 
number, is investigated in detail. In  particular, the drag is obtained up to 
O(R21n R), where R is the Reynolds number. 

1. Introduction 
Proudman & Pearson (1957) have obtained the steady flow field around a rigid 

sphere for small Reynolds numbers to the term of O(R21nR). The analysis has 
been continued by Chester & Breach (1969) to the term of O(R3 In R). The present 
work has resulted from the authors’ interest in the general problem of unsteady 
flow around a deforming boundary. Creeping flow around a sphere which de- 
forms in a prescribed manner is considered. The deformation is assumed to be 
radial but is otherwise quite general. The analysis is carried out to the term of 
O(R2 In R) .  Applications of the general results to the cases of a constant rate of 
deformation and a pulsating sphere are given as examples. Several cases corre- 
sponding to Strouhal numbers of different orders of magnitude are discussed. 

The flow around a deformable boundary is of considerable theoretical and 
practical interest. Lighthill ( 1952), using the Stokes approximation, has investi- 
gated the swimming of a tailess object by considering the squirming motion of a 
deformable sphere in a quiescent fluid. He assumed the deformation to be 
sufficiently small and gradual that the resulting flow is quasi-steady and that 
the boundary conditions can beappliedat themeanradius of the axisymmetrically 
pulsating sphere. Another related problem of slow viscous flow around a de- 
forming circular cylinder of infinite length has been solved by Lagerstroln & Cole 
(1955). The present problem has been solved within the framework of the Stokes 
approximation by Gautesen & Lin (197 1). 

2. Basic equations 
Consider the flow of a viscous incompressible fluid around a sphere of radius a, 

which deforms radially according to a, = a, for t, 6 0 and a1 = a,(t,) fort, > 0, 
where t, denotes time. The governing equations are 

t Present address : Department of Applied Mathematics and Theoretical Physics, 
University of Cambridge. 
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where po is the density, Y the kinematic viscosity and q, the velocity. Let the 
characteristic velocity U be the free-stream velocity and let the maximum radial 
velocity W of the boundary be of O( U ) .  If the change in velocity of order W takes 
place Over a distance of order aG and over a time period of order ao/W, then a, 
and a,/ W are the characteristic length and time respectively. If the pressure 
variation in the vicinity of the sphere is of the same order of magnitude as the 
viscous stresses, then pl is characterized by po vU/a. Nan-dimensionalization of 
the above equations by these characteristic quantities gives 

I SRaq/at + R(q . V) q = V2q - Vp, 

v.q  = 0, 

where the unsubscripted letters stand for the same physical quantities as their 
subscripted counterparts defined above and R = Uao/v and S = W / U  are the 
Reynolds and the Strouhal numbers respectively. 

The stream function $ satisfies 

- 1  a$ qe = -- 
r sin 8 ar 

1 a@ qr = -- 
r2 sin 8 86 ’ 

in spherical co-ordinates ( r ,  8,#).  In terms of $, equation (2.1) becomes 

In the region where r = O(R-l) the velocity and the pressure vary respectively 
by O ( U )  and O(p, U 2 )  over a large distance of O(a,/R). Thus the appropriate 
normalization factors for length, velocity and pressure are respectively a,/R, 
U andp, U2. The time and the distance are stretched by the same factor R in this 
region, i.e. I- = Rt andp = Rr. Thus in terms of ‘F = R2$, equation (2.1) becomes 

where 71 = T/S and D: and Lp are the same operators as those given in (2.2), but 
with r replaced by p. 

We apply the method of matched asymptotic expansions, which is described 
in the next section, to obtain a solution to the problem under consideration. The 
inner solution must satisfy (2.2), 

p,(a,8) = Sda/dt, qs(a,8) = 0 

and agree with the known steady flow for t < 0 (before the sphere deforms). 
The outer solution must satisfy (2.4), approach uniform flow at  infinity and 
agree with the known steady solution in the outer region for t < 0. The inner and 
outer solutions are then matched at small p. 
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3. Matched asymptotic solutions 
3.1. The leading terms of the expansions 

In  this and the following two sections only the case S = O( 1)  is considered. Other 
cases are discussed in the last section. Expansion of the solution to (2.4) for small 
R and fixed p gives the outer (Oseen) expansion 

= y o ( ~ i ,  P, P )  + Fi(R) Y1(71, P, P) + F2(R) Y ~ ( T ~ , P , P )  + . . . , 

The first term of the above expansion is the known uniform stream 
where F,+l(R)/Fn(R) = OW. 

Yo = *pZ( 1 - p y .  

Since the Reynolds number is defined using a,, the expansion for small R is valid 
only if the radius of the sphere remains of O(a,) during the deformation. We 
assume that, whenever a large acceleration takes place, it  does so over a time 
period small enough that S remains of O(1) during the deformation. Further 
normalization of time as a = t/SR = tl(a;/v) and expansion of the solution to (2.2) 
for small R and fixed r gives the inner (Stokes) expansion 

$ = ko(fl, r,  PI +f,(R) $l(a> r ,  PI +f2(R) $2(fl, r ,  P )  + * - * > 

a = t1/(4/J4 

wheref,,,(R)/f,(R) = o(R). We emphasize that the time normalization 

does not imply that our interest is confined to fl = O( l), i.e. t = O(R). 
Substitution of the inner expansion into (2.2) gives to first order 

D2 (aan - - 0 2  1 $,= 0. (3.1) 

sX0(s, a)ds+pg(a), ( 3 . 2 )  

The solution is 

Jaw $, = Q1(p) [E(a)r2 + Gr + H(a)r-l+ Pr4] + 7 
where the last term, which is a point source, arises from the radial deformation of 
the sphere, the term in brackets corresponds to the steady Stokes solution and the 
integral term is the rotational part of the unsteady (non-quasi-steady) solution. 
The variable X ,  in (3.2) satisfies the heat equation 

a2X,/ar2 = aX,/an, (3.3) 

and Ql(p) = i(p2- 1) is the first of a sequence of polynomials defined as integrals 
of Legendre polynomials: 

Q,(P) = j” %(PI@, (n 2 1). 
-1 

Application of the boundary and initial conditions and the condition that 
RZ$, matches Yo yields 

E ( a ) = - l ,  G = + ,  F = 0 ,  H(cr)=a3-3a2 2 9 9 ( 4  = -a2@,) 

xo(r ,O)  = 0, Xo(a,a) = 3(a- I) ,  Xo(m,a) = O(l) ,  
J (3.4) 
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where a = da/dn. The condition on g in (3.4) reflects the restriction that S = O( 1). 
For this case daldt = O( 1) or dalda = XR(da1dt) = O(R) .  Therefore g(a )  = O( 1) 
and @, remains of O( 1). We now show that X ,  = 3(a - 1) + O ( R ) .  We write 

X ,  = Xoo+RXol+ ..., 
where X,, is the solution for R = 0 (i.e. quasi-steady solution). Thus 

PX0,/a2r = 0, with Xoo(a, a) = 3(a- 1) and Xoo(co, a) = O(l ) ,  

which has the unique solution Xoo(r, a) = 3(a - I). Now X,, satisfies 

azx,, ax,, I ax,, 36 
ar2 aa R aa R _ - -  - O( 1) .  - 

Thus X,, = 0(1) and we achieve X ,  = 3(a- l)+O(R).  It then follows that 
aX,/aa = 3cF+O(R) = O(Rf.  With this result we deduce from (3.1) and (3.3) that 
the transient viscous diffusion of vorticity associated with radial deformation is 
of order R when the sphere translates a t  a speed such that S = O( 1 )  and R < I. 
On the other hand, the same radial deformation produces larger inertial effects 
given by the last term of (3.2), if g(a )  > O(R) .  In  this first-order solution as well as 
in solutions to any other order the boundary conditions are satisfied exactly 
rather than to the appropriate order. This is necessary for obtaining a uniformly 
valid transient solution for each order. The order of magnitude of the transient 
solution may change with time according to the changes in dalda, although a t  no 
time should it exceed order one. 

Since X ,  = 3(a- 1) + O ( R ) ,  to order R we may take X ,  = 3(a - 1). This leads to 

(3.5) 

which is just the quasi-steady Stokes solution. We remark that the same result 
could be obtained directly by allowing G to depend on a with the condition 
G(a) = O(R). This approach is taken in the higher order solutions. 

y?, = Ql(p) [ - r2 + $ar - a3/2r] - pa2d/R, 

In the outer region 

R2$, N - &$[2p2 - 3Rap + R3a3/p] - Ra2ap. 

Therefore, the highest order unsteady term of the Oseen solution in the Stokes 
region is of O(R2) .  The second term of the Oseen expansion with F,(R) = R j s  
expressed as Y, = Y l s + ~ ~ l u ,  where Yls is the known steady solution, 

'YE",, = - $( 1 + p) [I - exp { - &p( 1 -p))] ,  

and Yrlu is the unsteady part of the solution, which satisfies 

The transformation D;Y,, = exp [hpp] CD reduces the above equation to 

(a/&, + 4 - D i )  @ = 0. 

It follows from the above equation, from the condition of vanishing vorticity at  
infinity 

D2,Ylu=0 as p+m, 
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from the matching condition on the vorticity 

D;Ylu = D2$,, = 0 as p+O, 

and from the initial condition 

D:Yl,=O a t  c r = O  

that D:Yl, = 0. Thus in the second term of the Oseen expansion, time only 
appears as a parameter. Hence, 

Y'i = - Z a ( l + ~ )  Cl-exp ( - + A l - ~ ) ) l +  [ A ( ~ ~ ) P ~ + B ( ~ ~ ) P - ~ I Q ~ ( P ) .  

Here, B is zero; otherwise it leads to an unbounded term of O( l/RZ) in the inner 
region. A will be shown to vanish when RY1 is matched with RZ(R$.,). 

3.2. The second term of the inner expansion 

We now obtain $l. Subst,itution of the inner expansion into (2.2) shows that 
fl(R) = R and 

(3.6) 

where QZ(p) = -&(I - p 2 ) .  The solution to (3.6) is sought in the form 

$1 = Qi $11 + Qz $12, 

which upon substitution into (3.6) yields 

(3.7) 

In  arriving at  (3.8) the term containing r3 was omitted since it leads to an un- 
bounded term in the Oseenregion. The solutions to (3.7) and (3.8) are required to 
satisfy separately the conditions that the velocity perturbation vanishes on the 
deforming boundary and that the known steady solution is recovered for 
t 6 0, i.e. 

@&,a) = 0, a$,,/ar(a, a) = 0 for (i = 1 , 2 ) ,  

$ll(r,O) = -&(2rz- 3r+r-l), 

$lz(r, 0) = 3 ( 2 r 2  1 6  - 3r + 1 - r-l+ Y-~), 

where the initial values for $11 and $lz have been obtained from Proudman & 
Pearson (1957). The solutions to (3.7) and (3.8) which lead to bounded velocity 
fields are 

(3.9) 
$11 = K(a)r2  + C(a)r-l+ Pr + r-l 

plz = garz - &a2r + &!(a) - AaIr-1 + D(a)r-2, 

sX( s ,  a )ds  + h(a), 
L d  

where X satisfies 
azx ax - g ( y )  
ar2 aa R 1 --- = Go(., c). 

5 

(3.10) 

F L M  56 
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We remark that $11 satisfies (3.7) exactly, while $12 satisfies (3.8) to order R 
under assumption that &(a) = O(R). I n  addition, L and N were renamed in 
arriving a t  (3.9) to include some additional functions of a. Matching gives 
K(a)  = - #a and A ( T ~ )  = 0. Application of the boundary and initial conditions 

to $11 and $12 gives C((T) = -&a4, P = 9 u 2 ,  16 

M ( v )  = &a3. 
X ( r ,  0) = 0, X ( a ,  cr) = 0, X(o0, a) = O(l) ,  

D(cr) = &a5, 

Note that &(rr) = O(R)  and that we have chosen X ( a ,  cr) = 0, which makes X 
unique (the boundary conditions then determine C and P) .  We take P to be a 
function of time so that the boundary conditions are satisfied exactly. This 
choice of P ensures that (3.7) is satisfied to the appropriate order. A similar 
situation was encountered in the determination of G in The solution of (3.10) 
can be obtained by use of a Green’s function. Let 

x = r - a ( c )  and X ( r ,  a) = Y(x,a).  

Then (3.10) can be rewritten as 

Y,, = -Yu = G o ( ~ + a , ~ ) - h ( ~ ) Y z  (0 < a, 0 < x). 
The corresponding boundary and initial conditions are 

Y(0,  a) = 0 and Y ( x ,  0) = 0. 

The solution of the above equation with the O(R) term (E(a)Y, neglected leads to 

1) dr0d7. 
( r+ro-a(7) -a(a) )2  

4(a - 7) 
-exp [ - 

It follows from the above and the definition of Go that XJr,  a) = O( 1) as was 
assumed. We remark that the transient part of the solution is decoupled from the 
quasi-steady part. While the former remains of the same order for all time the 
latter changes its order of magnitude with time but never exceeds O(1). Each 
term $i in our asymptotic expansion can be considered to consist of a transient 
term yki1 and a quasi-steady term $i2.  For our expansion to be valid each term 
$i should be of O( 1). Thus $il and $i2 need not each be of O( 1); only their sum 
need be. The fact that the transient term changes its order of magnitude then 
does not invalidate our asymptotic expansion. As long as X ,  is of O( 1) for some 
time, X must be retained in the analysis. 

3.3. The third term in the inner expansion 
We now obtain the third term in the inner expansion. It is known that the third 
term in the steady solution is of O(R21nR) (see Proudman & Pearson 1957). 
Since the unsteady term is a t  most of the same order of magnitude as the steady 
term in the inner region we have 

f2(R) = R21n R 

and o2(a/aa- = 0. 
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The above equation is identical to that which governs $, and thus $2 is of the 
same form as i.e. 

$2 = Q1(p) [ Y(a)r2 + T r  + U ( a )  r - 7 .  
Now the term Y(a)r2 leads to a term Y(a) (R21nR)p2 in the Oseen region. 

However, there is no such term in that region, since such an Oseen term requires 
in the Stokes region a In R term which is unbounded as R + 0. Therefore Y must 
be so chosen that this term is cancelled by a similar term in R2$3. Substitution 
of the inner expansion into ( 2 . 2 )  and solution of the resulting equation to 
O(R2) shows that the only term in R2$3 which can cancel Y(R21nR)p2 is 
- &a2R2 r2 In (r/a). This term when expressed in the Oseen variables becomes 

&a2( R2 In R)p2 - 2-a2R2 4 o  p lnp+&a2(R21na)p2, 

from which its follows that Y(a)  = -&a2. The boundary condition that the 
velocity perturbation is zero on the moving boundary and the initial condition 

$Ar, p, 0) = - &(2r2 - 3r + r-7 Ql(p) 

then give T = ga3, U ( v )  = -&ah .  

The argument which was used in the determination of P and G applies equally 
to T. 

4. Drag force 
The following drag computation folIows closely the line of Chester & Breach 

(1969). In  this section the pressure and the derivatives of all quantities appearing 
are understood to be evaluated a t  the surface of the sphere ( r  = a).  Integration of 
the stresses over the entire deforming surface gives 

D = 2npvao U JOT [ ( - p  + 2 2) cos 6- (g - + 2) sin 61 assin 6d6 

= [-pcose+-- r ar2 a2sined0, "$1 
in which 0, is the Stokes drag on a sphere of radius uo and p is given by the 8 
component of (2.1), i.e. 

Integration of the above equation with respect to 6 when qo is expressediii terms of 
II. vields 

Now, the inner solution can be written as 

@ = : &,(P) OD,(?) - a2&/R, 
n = l  
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which, together with (4.1) and (4.2), gives 
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The inner expansion and the above equation yield 

D = D,[a+a2R{#++G,(a, a) - (3~)-~X,(a,  a)}+R21nR(&a3)]. (4.3) 

For the case of a rigid sphere, a = 1, a = 0, 1, X = 0 and G(a, a) = 0 and the 
above drag reduces to the known result obtained by Proudman & Pearson. 

5.  Examples 
5.1. A pulsating sphere 

Consider a sphere pulsating according to a(a)  = 1 +a2f(a/a), where a = O ( R ) .  
Then G,,(r, a) = 3aR-lf'(a/a) [I - 3a3/(4r3)] and 

where primes denote differentiation. It can be shown that the second integral is 
of O(a).  Note that da(cr)/da = O ( R ) ,  i.e. da(t)/dt = O(1).  Hence the present theory 
for X = O( I)  applies. As a specific example, let f ( r /a)  = 1 - cos (a/a). Then the 
first integral can be reduced to tabulated functions. Since 

where Cl and S, are the tabulated cosine and sine integrals (Abromowitz & 
Stegun 1964, pp. 300, 322) .  The numerical results for the case of a = 0.2 and 
R = 0-2 are given in figure 1. The drag ratio D/D8 is plotted against the phase 
angle of the pulsation 6' = a/a. The results for the corresponding quasi-steady 
case are also plotted for reference. It is interesting to note that at  6' = &r and 
6 = $51, which correspond to the same radius, the drag ratios are 1.1 99 and 1.068 
respectively. It is no surprise that the drag force on an expanding sphere is 
13 per cent larger than that on a shrinking sphere of the same radius. We also 
note that the drag ratio decreases from 1.061 to 1.030 in one cycle. This drag 
reduction during the first cycle is due to the fact that the fluid is viscous and 
cannot respond instantly to the deformation of the sphere. When the sphere is 
ready to repeat the same deformation at  the end of the first cycle, the flow has not 
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e 
FIGURE 1. Drag force on a pulsating sphere; -, quasi-steady drag; 

, total drag. _ _ -  

yet returned to the original uniform stream. However, as time proceeds, the fluid 
will eventually catch up with the deformation and pulsate relative to the uniform 
stream with the same frequency. This can be seen from the expressions for 
Go(a, cr) and &(u,cr). As cr-too, 

D+D,[l +#R+&xsin(r~/a)-~a%sin(cr/a-&r)+&R~lnR+O(R~)]. 

Hence the drag becomes periodic with frequency I/a for large IT. 

5.2. A constant expansion 

Consider the case a( t )  = 1 + Pt, where /3 = O( l), so that S = O( 1). In  the stretched 
co-ordinates u(cr) = 1 i-acr, where a = SR = O(R). It follows from the results of 
$4 that 

where E,(x) and F ( x )  are the exponential integral and the Dawson integral 
respectively. These integrals are defined and tabulated in Abramowitz & Stegun 
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FIGURE 2. Drag force on an expanding sphere; --, quasi-steady drag; 
_ _ _  , total drag. 

(1964, pp. 228, 298). The numerical results for the case of a = 0.2 and R = 0-2 are 
plotted in figure 2. The results for the corresponding quasi-steady case are also 
plotted in the same figure for comparison. The significant increase in the drag 
force due to the radial expansion is obvious. The indicated increase in drag is 
entirely due to the transient momentum transfer through viscosity. 

6. Discussion 
The results obtained above are valid as long as the radius of the sphere remains 

of the same order of magnitude during the deformation. The time rate of deforma- 
tion has been assumed to be of the same order of magnitude as the ambient uniform 
stream velocity, i.e. X = O( I). The acceleration 6,(tl) is allowed to be larger than 
O(vU/n i ) ,  whenever its duration is t, < O(ai/u),  in order that S remains O(1). 
For the case of 8 & 1, the convective acceleration term is no longer negligible 
and the full Navier-Stokes equation must be solved. On the other hand, if the 
deformation takes place so gradually that X < 1, i.e. ci(r) < O(R) or ci(tl) < O( U ) ,  
then the flow around the sphere is quasi-steady and time enters into the solution 
only as a parameter. The drag on a deforming sphere in such a quasi-steady flow is 
given by the results for the case of rigid sphere but with the Reynolds number 
based on the instantaneous radius. Our procedure can be continued to obtain 
higher order terms, but the solution to the unsteady Oseen equation with a 
source term must be obtained. As far as the authors are aware, no precise measure- 
ments of the drag force on a deforming sphere are yet available. 
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